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Nonuniversality in level dynamics

Paweł Kunstman, Karol Z˙ yczkowski, and Jakub Zakrzewski
Instytut Fizyki Mariana Smoluchowskiego, Uniwersytet Jagiellon´ski, ulica Reymonta 4, 30-059 Krako´w, Poland

~Received 7 October 1996!

Statistical properties of parametric motion in ensembles of Hermitian banded random matrices are studied.
We analyze the distribution of level velocities and level curvatures as well as their correlation functions in the
crossover regime between three universality classes. It is shown that the statistical properties of level dynamics
are in generalnonuniversaland strongly depend on the way in which the parametric dynamics is introduced.
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PACS number~s!: 05.45.1b, 95.10.Fh, 47.52.1j
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I. INTRODUCTION

A link between random matrix theory~RMT! @1# and the
statistical properties of spectra of quantum systems is w
established. Depending on the symmetry of a classically c
otic quantum system, its spectral fluctuations are descr
by the Gaussian orthogonal~GOE!, the Gaussian unitary
~GUE!, or the Gaussian symplectic ensemble~GSE! @2,3#.

Quite often the physical systems depend on some exte
parameter, say,l; therefore, it is interesting to study th
level dynamics, i.e., the motion of eigenvaluesEi(l) as a
function ofl. Among the first parametric properties studi
were the investigations of the avoided crossings gaps@4–6#,
the parametric number variance@7#, or the curvature of the
levels ~i.e., the second derivatives of their energies with
spect to the parameter! @8–13#. It has been claimed that th
statistical properties of level dynamics are universal for d
ordered or strongly chaotic systems@8,14# provided the
change ofl does not modify global symmetries propertie
To reveal the universality one has to both unfold the ene
levels @3# and appropriately rescale the parameterl
@8,11,14#. Other statistical measures of parametric dynam
such as the level slope~velocity! distribution ~Gaussian
shaped for random systems@8,11,14#!, the velocity-velocity
correlation function@14–17# in the bound spectrum, or para
metric conductance fluctuations@18# and fluctuations in the
Wigner time delay@19# for scattering systems have also be
discussed.

A word of caution is, however, necessary at this poi
Even for the nearest-neighbor spacing distribution, wid
considered to be universal, exceptions from the RMT pred
tion may be quite significant for real physical systems@20#.
Much more pronounced and common are the deviations f
the RMT predictions for the parametric motion of levels.
particular, as shown by Takami and Hasegawa@10#, the cur-
vature distribution shows nonuniversal behavior for sm
curvatures even for the mixing system~a Bunimovich sta-
dium!. Similarly, non-Gaussian slope distributions as well
strongly non-Cauchy-like curvature distributions were o
served for a magnetized hydrogen atom@11#. The origin of
these deviations has been linked to partial wave-function
calization on unstable periodic orbits. Thus the nongen
features of parametric statistics may provide most interes
information about the physics of a given physical system

Most of these studies considered pure symmetry ca
551063-651X/97/55~3!/2446~9!/$10.00
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i.e., systems pertaining to a given, e.g., GOE universa
class. This is often not the case in a realistic situation.
particular, in the presence of the magnetic field or t
Aharonov-Bohm flux, the time-reversal invariance~TRI!
symmetry becomes broken; such a situation corresponds
crossover between the GOE and the GUE for a random
tem. In this context the velocity-velocity correlation functio
has been studied intensively@21,22,17# as well as the veloc-
ity distribution@23# or the curvature distribution@24,25#. The
authors considered mostly the situation when the increas
the external parameterl ~e.g., the magnetic field! destroys
the time-reversal invariance, although, importantly, it h
been noticed@23# that the parametric velocity distributio
may strongly depend on the nature of the perturbation. R
tively less frequent were studies of the parametric dynam
in the transition region between completely delocalized a
localized spectra~see, however, e.g., the treatment of t
velocity distribution for the broken-TRI-symmetry case
@26,27#!.

In order to model the spectra of quantum systems i
crossover regime~a weak localization or a partially broke
symmetry! one may utilize random matrix ensembles th
interpolate between the canonical ensembles. For exam
real symmetric band random matrices are capable of mo
ing the transition between the localized and the delocali
regime. Statistical properties of their eigenvalues and eig
vectors depend on a single scaling parameterx5b2/N @28#,
whereN denotes the matrix size andb the bandwidth. Al-
lowing the matrices to be Hermitian and changing the re
tive weight of the imaginary componenta, one can model
the effect of the time-reversal symmetry breaking and
transition from an orthogonal to a unitary universality cla
The corresponding scaling parametery is proportional to
Na @29# for small perturbations. An ensemble of Hermitia
band random matrices~HBRMs! can therefore be completel
characterized by two scaling parameters (x,y) @30#. The
Poissonian, strongly localized spectrum is obtained in
limit x!1, while in the opposite delocalized limitx@1 the
model reduces to the GOE fory50 and the GUE for
y@1.

This work is intended as a systematic study of the pa
metric dynamics and the corresponding statistical meas
in the transition region and in the localized regime. Our wo
differs from most of the analyses mentioned above in
way the parametric dependence is introduced. We ass
2446 © 1997 The American Physical Society
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55 2447NONUNIVERSALITY IN LEVEL DYNAMICS
that the changes ofl leave the global properties of the sy
tem unaffected. In the random matrix approach this
equivalent to the assumption that the statistical propertie
the ensemble of matrices do not depend on the value of
parameterl determining the parametric dynamics. F
physical system applications this is equivalent to saying
the symmetry properties of the system considered, in a
tion to the character of the underlying classical dynam
~say, the fraction of the phase-space volume that is chao!,
are invariant with respect tol or, from a practical point of
view, the the dynamics changes only weakly withl, in the
interval of l values considered in each case. The level
namics is, in a sense, ‘‘perpendicular’’ to crossovers betw
canonical ensembles, as schematically shown in Fig. 1. S
a physical situation may correspond to a variation of
disorder parameter in a mesoscopic system, for which
other parameters are kept constant. Special attention is d
to the localized case, characterized by small values ox
where some analytic predictions obtained using supers
metric calculus exist@26,27#.

The interest in such a study is twofold. First, it is inte
esting to see how the parametric properties of the sys
follow the transition between different pure universal
classes. Second, the results obtained in the HBRM mo
may serve in the future as a reference for a comparison
statistics obtained in real physical systems. It is then of
most importance to know what one may expect from
purely random model. This may enable one to isolate
nongeneric, i.e., characteristic for a given system, proper

The paper is organized as follows. In the next section
describe the model and the parametric dynamics. The di
bution of level velocitiesP(v) is analyzed in Sec. III. Leve
curvatures are discussed in Sec. IV. Section V is devote
the velocity-velocity correlation functionCv(l). Section VI
considers higher-order statistical measures. Finally, we
cuss the consequences of the results obtained for var
statistical measures in Sec. VII.

II. PARAMETRIC DYNAMICS FOR HERMITIAN BAND
RANDOM MATRICES

Hermitian band random matrices are defined by

Hi j5~j i j
R1 i j i j

I !Q~b2u i2 j u!, i , j51, . . . ,N, ~2.1!

FIG. 1. Scheme of the space of random matrices~and dynamical
systems!. Three circles represent universality classes~Poissonian,
orthogonal, and unitary! and dashed lines represent crossovers
tween them. Solid arrows stand for perpendicular transitions, a
lyzed in this paper. A broken arrow exemplifies a parallel transiti
not treated here.
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whereQ() denotes the unit step function vanishing at t
origin. Independent random variablesj i j

R andj i j
I are distrib-

uted according to Gaussian distributions with the zero-m
root-mean-square values equal tos i j

R ands i j
I , respectively.

The parametera measures the relative size of the imagina
part of the off-diagonal matrix elementsa5(s i j

I /s i j
R)2, i

Þ j ~the notation has been simplified with respect to R
@30#!. A normalization condition Tr(H2)5N11 keeps all
the eigenvalues in a constrained energy range. It also all
us to express the variances of the real and imaginary par
matrix elements in terms of matrix sizeN, integer bandwidth
b, and real parametera,

~s i j
R!25

~N11!

2N1~a11!~2N2b!~b21!
~11d i j !, ~2.2!

~s i j
I !25

a~N11!

2N1~a11!~2N2b!~b21!
~12d i j !. ~2.3!

For a diagonal random matrix (b51) the density of ei-
genvalues is Gaussian and the level spacings are distrib
according to the Poisson distribution, independently of
parametera. In the opposite limiting case of the full matri
(b5N), variations of the parametera correspond to the pro
cess of the time-reversal symmetry breaking in a dynam
system and control the transition between orthogo
(a50) and unitary (a51) ensembles.

Statistical properties of the spectrum and eigenvector
real symmetric band matrices depend only on a scaling
rameterx5b2/N. This scaling law, observed initially by nu
merical computation of the localization length@28#, was re-
ported to describe also the distribution of eigenvalues@31#
and eigenvectors@32# and was subsequently explained the
retically @33#.

The same scaling law holds also for Hermitian matric
@33,34#. Moreover, effects of the time-reversal symmet
breaking are controlled by another scaling parame
y52Na/(12a) @30#, stemming from the universal prope
ties of the orthogonal-unitary transition founded by Pand
and Mehta@29#. The structure of eigenfunctions of HBRM
and the distribution of the inverse participation ratio ha
also been studied recently@35#.

Let us now consider the parametric random matrix

H~l!5H1cosl1H2sinl. ~2.4!

Both matricesH1 andH2 are taken from the same ensemb
of HBRMs. Hence the spectral properties ofH are stationary
and do not depend onl. Moreover, during the transition, th
motion of eigenvalues is restricted to a bounded energy
terval for arbitraryl. This model of parametric dynamic
was already used for the investigation of level curvatu
@11# and velocity correlation functions@16,17#. The dynam-
ics of eigenvalues as a function ofl may be treated as th
dynamics of interacting particles~eigenvalues! with l play-
ing the role of fictitious time@2#. This allows us to interpret
the slope of the levels as the velocity of the particles a
their curvature as the corresponding accelerations.

Parametric dynamics defined above can be studied
merically in a straightforward way. For several values
ensemble parameters (N,b,a) we have generated random

-
a-
,
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2448 55KUNSTMAN, ŻYCZKOWSKI, AND ZAKRZEWSKI
matrices according to Eqs.~2.1!–~2.4!. Diagonalizations of
resulting matrices for several values ofl have allowed us
then to find level velocities and curvatures by a fini
difference method. Special attention has been paid to ob
reliable values of velocities and curvatures, especially
very small and very large values, by varying the size of
step inl @36#. Before computing the derivatives of the e
genvalues with respect tol, the standard unfolding tech
nique was applied@3# to set the mean level spacingD to
unity. We have considered matrices of sizeN varying be-
tween 50 and 500, velocities and curvatures have been c
puted at about 200 different values ofl, and the typical
number of independent realizations of the dynamics@Eq.
~2.4!# in each case studied has varied with matrix size
ensure at least 200 000 data points in each statistics. In o
words, we have simultaneously performed the averag
over the energy~data from different energy levels of a give
matrix H) and the averaging over the disorder parame
~several realizations of the dynamics for the same value
N,b, anda).

To check the reliability of the numerical procedure w
have setb5N and we have reproduced known results co
cerning the distribution of velocities and curvatures as w
as the velocity correlation function for the GOE (a50) and
the GUE (a51). Moreover, we have verified that both sca
ing parametersx andy correctly describe the parametric d
namics. The statistical properties of all quantities stud
have been found to be independent of the matrix dimens
N ~for sufficiently largeN) provided the parametersx and
y have been kept constant.

In the following sections we describe results obtained
different statistics, commencing with the distribution of fir
derivatives, i.e., velocities. To avoid any misunderstandi
let us repeat again that all the data presented are obtaine
perpendicular transitions@both H1 andH2 in Eq. ~2.4! be-
long to thesamerandom matrix ensemble# as exemplified by
double-sided arrows in Fig. 1. Thus, for all values ofl the
scaling parametersx andy have the same values. We sha
not consider here the case when the parameter change m
fies the global symmetry properties, a situation exemplifi
by broken line arrow in Fig. 1.

III. DISTRIBUTION OF LEVEL VELOCITIES

For level dynamics within the GOE or the GUE the d
tribution of level velocitiesP(v) is Gaussian@8,11,14#. This
fact is easy to explain using first-order perturbation theo
For l50 the derivativedEi /dl is equal to the diagona
element of matrixH2 expanded in the eigenbasis ofH1.
Since both matrices are drawn independently from the s
ensemble, the matrix elements are Gaussian random num
leading to the Gaussian velocity distribution.

On the other hand, in the strongly localized limit an an
lytical formula forP(v) given by Fyodorov@26# for systems
with a broken TRI symmetry strongly differs from a Gaus
ian. A non-Gaussian character of the velocity distribution
the GOE to GUE transition, corresponding to the TRI sy
metry breaking, has been discussed in@23–25#.

We have analyzed the transition between localized
delocalized spectra both for random systems with a bro
TRI symmetry~i.e., the ensembles interpolating between
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Poisson ensemble and the GUE! and for ensembles interpo
lating between the Poisson ensemble and the GOE.
former allows us to test the analytical prediction of Fyodor
@26#.

The theoretical prediction, as presented in@26#, has no
free parameters; both the shape of the distribution and
scale~determined by the velocity variance! are determined
by the theory. Surprisingly, the direct comparison of th
distribution with the numerical data obtained has been hig
unsatisfactory. The agreement is recovered~see Fig. 2! when
both the theoretical distribution and the numerically obtain
data are rescaled with respect to the velocity varia
sv5A^v2& ~note that the mean velocity vanishes by the co
struction of the ensemble!. Thus the apparent disagreeme
originally observed is due to the difference between the th
retical and numerically obtained values of the velocity va
ance~the ratio of the numerical value to the theoretical p
diction being about 13!. We do not have a clear explanatio
of this disagreement. It may be due to the fact that the ba
width in our HBRM ensemble is sharply defined@compare
Eq. ~2.1!#, while Fyodorov@26# assumed a smooth decrea
of the random matrix elements variance with increasing d
tance from the diagonalu i2 j u.

The theoretical prediction@26#, represented by a smoot
line in Fig. 2, takes the form

P~w!5
p

6

pwcoth~pw/A6!2A6

sinh2~pw/A6!
, ~3.1!

where the rescaled velocityw5v/sv . Similar qualitative
agreement is obtained for different values of the scaling
rameter up tox of the order of unity, corresponding to th
transition to a delocalized case. Then the numerical data
to show a Gaussian~typical for the GUE! large velocity tail
instead of the exponential tail corresponding to fully loc
ized situation, as exemplified by the lack of large velocit
in the numerical data presented in Fig. 2 as a thin line his
gram.

FIG. 2. Velocity distribution in a semilogarithmic scale for th
HBRM model interpolating between the Poisson ensemble and
GUE (a51, a fully broken TRI symmetry!. The thick ~thin! line
histogram corresponds to numerical data obtained in the local
casex50.126 ~the delocalized casex51.408) from diagonaliza-
tions of 10 000 matrices of rankN571. A dashed thick line repre
sents the theoretical prediction, Eq.~3.1!, while a thin line repre-
sents the Gaussian distribution.
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55 2449NONUNIVERSALITY IN LEVEL DYNAMICS
Although the theoretical prediction is obtained for t
case of a fully broken TRI symmetry, our numerical da
indicate that it works extremely well also for preserved T
symmetry~real symmetric matrices! provided that again the
velocity variance is appropriately adjusted. The exempl
data are presented in Fig. 3 for two cases correspondin
strong localization and a transition to the delocalized regim
Here the numerically obtained variance is twice as large
the theoretical value calculated in the same way as for
broken-TRI-symmetry ensemble. It seems, therefore, that
same distribution, Eq.~3.1! describes the velocity distribu
tion for both the TRI-symmetry case and the no-TR
symmetry situation. The difference between the two
sembles ~the former interpolating between the Poiss
ensemble and the GOE, the latter between the Poisson
semble and the GUE! appears in the numerical value of th
velocity variance only. It is clear the variance is a uniq
parameter that determines the appropriate velocity sc
similarly as for the pure GOE and GUE@8#.

IV. DISTRIBUTION OF LEVEL CURVATURES

Let us consider now the distribution of curvatur
K5d2E/dl2. As shown by Gaspard and co-workers@8#, the
tail of the distribution decays algebraically asK222b. This
universality has been verified for different systems@9–11#.
At the same time, the small curvature behavior has b
found to be nongeneric even for strongly chaotic syste
@10,11# and reflecting the system-dependent wave-funct
localization properties~scarring by periodic orbits!.

On the other hand, the scaled curvature

k5K
D

bpsv
2 ~4.1!

for pure random ensembles obeys the generalized Ca
distribution @11–13#

P~k!5Nb

1

~11k2!~b12!/2 ~4.2!

~whereb51,2,4 for the GOE, GUE, and GSE, respective
andNb denotes the normalization constant!. Here we dem-

FIG. 3. Same as Fig. 2, but for real symmetric matricesa50:
thick line histogram, a localized casex50.056; thin line histogram,
a delocalized casex55.63.
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onstrate that if one allows the parameterb to acquire real
valuesbP(0,2#, the same distribution may be used in
general case of the intermediate ensemble interpolating
tween Poisson ensemble, GOE, and GUE pure cases~pro-
vided we consider the perpendicular transition!. The normal-
ization constant is then equal to

Nb5
1

Ap

GS b12

2 D
GS b11

2 D ~4.3!

and the rescaling Eq.~4.1! holds almost everywhere.
To test this conjecture we have generated several p

metric dynamics perpendicular to crossovers between
Poisson ensemble and the GUE, the Poisson and betwee
GOE, and the GOE and the GUE using, as before, the
mulation of Sec. II, Eqs.~2.1! and ~2.4!. The numerically
obtained histograms of curvatures in the double-logarithm
scale have been used to fit the algebraic decay of the ta
the distribution by the formulaP(K);K2m. Then b has
been found asb5m22 @compare Eq.~4.2!#. The same value
of b has been used together with the numerically obtain
velocity variance to rescale the curvatures according to
~4.1!. The exemplary results of such a procedure toget
with the conjecture~4.2! are presented in Figs. 4 and 5
double-linear and double-logarithmic scales, respectiv
Observe the excellent agreement between the numerica
sults and the proposed distribution.

While Eq. ~4.2! seems to describe well, at least appro
mately, the numerical data for curvatures everywhere in
tween pure cases of the GOE, the GUE, and the Pois
limit, the scaling ~4.1! works best for the delocalized o
weakly localized spectra. For the Poisson ensemble to G
crossover, close to the Poisson limit, the scaling obtai
using Eq.~4.1! is incorrect. The agreement with the gener
ized Cauchy distribution~4.2! is obtained only if the numeri-
cal data are rescaled additionally by a numerical factor of

FIG. 4. Exemplary curvature distribution for the ensemble int
polating between the localized Poisson case (b50) and the GOE
(b51) obtained numerically for matrices of rankN571 and band-
width b55 corresponding tox50.352 ~histogram!. The thick
dashed line represents the fitted distribution, Eq.~4.2!, with
b50.59. Thin solid and dotted lines represent the limiting distrib
tions for the Poisson ensemble and the GOE, respectively.
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2450 55KUNSTMAN, ŻYCZKOWSKI, AND ZAKRZEWSKI
order of unity~typically 1.5–2, depending onb). Putting it
differently, the parameterb in the denominator of Eq.~4.1!
should be replaced by another function ofb that goes tob
when the transition to the delocalized TRI-symmetry-brok
case~i.e., the GUE! is fully accomplished. This indicates tha
the proposed distribution~4.2! is most probably the approxi
mate one only. Still, we find it quite remarkable that th
simple analytic expression, with the proper rescaling, wo
so well for the interpolating ensembles.

Let us mention that the power of the algebraic tail beh
ior may be analytically related to the level repulsion para
eterb by a simple consideration of 232 random matrices
@8# yielding m5b12. A comparison ofb values obtained
from the tail of the distribution withb8 values obtained from
the independent fit of the Izrailev distributionPb8(s) @38# is
presented in Fig. 6 in the whole interval of the intermedia
b values. The agreement is quite good~and of a similar
quality to that obtained for the Fourier transform of t
velocity-velocity correlation function! considering that both
the spacing distributionPb8(s) and the proposed curvatur
distributionP(k) are most probably good approximations
the true distributions only.

It is worth noting that the distribution~4.2! works well for
the ensemble interpolating between the GOE and the G

FIG. 5. Same as Fig. 4, but in a double-logarithmic scale

FIG. 6. Parameterb obtained from the decay of the tail of th
curvature distribution against the level repulsion parameterb8 ob-
tained from the independent fit of the Izrailev distribution@38#.
Each dot represents one ensemble interpolating between the Po
ensemble, the GOE, or the GUE.
n

s

-
-

-

E

for the perpendicular action of the parameterl. On the other
hand, ifl is responsible for the TRI symmetry breaking,
has been shown that the tails of the curvature distribution
exponential@24,25# and not algebraic, as observed in th
work. Parametric statistics are therefore sensitive to the w
the parameter acts. Another example of this sensitivity
available from the earlier studies of periodic band rand
matrices@37# and three-dimensional Anderson model@39#,
where the curvature distribution close to a log-norm dis
bution has been observed in the localized case, while
another distribution has been proposed in transition reg
@40#.

V. VELOCITY-VELOCITY CORRELATION FUNCTION

In a series of papers, Simons and Altshuler@14# have
discussed the universality of parametric statistical proper
for disordered samples as well as for Gaussian ensemble
reveal the universality both the eigenvalues~to unit mean
spacing! and the parameterl ~asX5svl) have to be res-
caled@8,11,14#. We have observed the power of such a re
caling already in the previous sections.

Consider next the velocity-velocity correlation function,
frequent subject of recent investigations@14–18,21,24#,

Cv~l!:5
1

2pD2 K E
0

2p

v i~l8!v i~l81l!dl8L , ~5.1!

where^& denotes ensemble averaging andD stands for the
mean level spacing. By definitionCv(0)5sv

2 , thus the ap-
propriately rescaled correlation functions take the fo
C̃v(X)5Cv(X)/sv

2 . Moreover, several models of time
reversal symmetry breaking due to the Aharonov-Bohm fl
lead to a correlation function practically indistinguishab
from the one characteristic for the GUE.

It was shown@14,21,15# that for all three universality
classes the rescaled correlation function

Cv~X!;AbX
22, X→`, ~5.2!

with the proportionality coefficientAb dependent on the en
semble ~we denote byb the level repulsion paramete
b51,2,4 for the GOE, the GUE, and the GSE, respective!.

Explicit expressions have been obtained@14# for closely
related@but distinct fromCv(l)# autocorrelation functions a
fixed energy. A global approximation forC̃v(X) has been
proposed@16#. For the case of a classically chaotic syste
subject to an Aharonov-Bohm flux Berry and Keating@22#
obtained a semiclassical approximation forCv(l) having the
form of an everywhere analytic function ofl. Yet it was
demonstrated@17# that Cv(l) is not analytic and suffers a
logarithmic singularity atl50.

Analytic properties of correlation functions are conv
niently studied using the periodicity inl. In the Fourier do-
main

Cv~l!5 (
n50

`

cncos~nl!. ~5.3!

The mean-squared velocity, determining the scale, is gi
by the sum of all coefficientssv

25C(0)5(n50
` cn . Expand-

son
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55 2451NONUNIVERSALITY IN LEVEL DYNAMICS
ing the dependence of a given eigenvalue onl in the Fourier
seriesEi5(n52`

` aie
inl, wherean5a2n* , on account of Eq.

~5.1! it is easy to see thatcn5n2^uanu2&/D2.
The asymptotic behavior ofCv(l);2l22 corresponds

to a linear increase of Fourier coefficientscn for smalln. On
the other hand, for largen it was shown @17# that
^uanu2&;n242b and, consequently,

cn;n222b. ~5.4!

This result was obtained by extending the parameterl into
the complex plane and analyzing the distribution of bran
points and anticrossings@4,6#.

Thus, despite the nonanalytic character of the correla
function, bothCv(l) and its Fourier transform have simp
asymptotics given by Eqs.~5.2! and ~5.4!, respectively. It is
interesting to see whether a similar behavior may be fo
for the interpolating ensembles. To this end we have stud
the asymptotics ofCv for all three possible transitions, i.e
ensembles interpolating between the Poisson ensemble
the GOE, the Poisson ensemble and the GUE, as well as
GOE and the GUE. In all cases the parameterl acted per-
pendicular to a given transition~compare Fig. 1!.

We have observed the sameX22 large-X behavior Eq.
~5.2! independently of the ensemble studied. As an exam
Fig. 7 shows the rescaled velocity-velocity correlation fun
tions C̃v(X) corresponding to five different cases along t
Poisson-GUE crossover.

Algebraic decay of the corresponding Fourier transfor
is visualized in Fig. 8. Observe the continuous change of
slope, growing from24 for the GUE until22 for the Pois-
son limit. This corresponds to the continuous change of
repulsion parameterb between 2 and 0 in the level spacin
distribution. Independently one may fit the nearest-neigh
spacing distribution obtained numerically to the Izrailev d
tribution @38# Pb8(s), which provides an excellent approx
mation for the nearest-neighbor spacing distribution for
interpolating ensembles.Pb8(s);sb8 for small s. We have
verified thatb values obtained by fitting the straight line
the tail of log(cn) equalb8 values obtained from the fits o
the spacing distribution within 5%. Therefore, we conclu

FIG. 7. Rescaled velocity correlation functionC̃v(X) obtained
for five transitions perpendicular to the GUE-Poisson crosso
N571,c52.0: b571 (n) ~GUE!, b510 ~1!, b57 ~h!, b55 ~s!,
andb54 ~L!. Ensemble averaging is performed over 100 matric
the lines are drawn to guide the eye.
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that the validity of Eqs.~5.2! and ~5.4! extends to the inter-
mediate ensembles and fractional values of the repulsion
rameterb.

We stress again that this result is restricted to the perp
dicular transitions only. If parameterl is responsible for the
transition between the ensembles~e.g., the magnetic flux in
the Aharonov-Bohm effect! the velocity-velocity correlation
function obeys thecn;n24 algebraic decay, independent
of the degree of localization@17#. Thus, similarly to the ve-
locity distribution itself@23#, also the velocity-velocity cor-
relation functionC̃v(X) is sensitive to the nature of pertu
bation generating the parametric dynamics.

In a full analogy with the velocity-velocity correlation
function ~5.1! we define the curvature correlation function

Ck~l!:5
1

2pD2 K E
0

2p

Ki~l8!Ki~l81l!dl8L . ~5.5!

However, this function does not provide us with any ne
information. This fact is easy to understand studying
Fourier expansionCk(l)5(n50

` kne
inl. As for velocity cor-

relation function one uses mean Fourier coefficients of in
vidual energy levels and obtains relationkn5n4^uanu2&/D2.
A comparison with the velocity correlation function Fouri
coefficients yields immediately

Ck~l!5
]2

]l2Cv~l!, ~5.6!

which easily yields the properties ofCk(l) from known
properties~e.g., the asymptotic behavior! of Cv(l). Equation
~5.6! holds for an arbitrary matrix ensemble. For comple
ness we present the numerically obtainedCk(l), rescaled
with respect toCk(0), for the GOE and the GUE inFig. 9.
Notice a much faster decay of the correlation between c
vatures as compared to the velocity correlation function. A
ymptotically, using Cv;X22 and Eq. ~5.6! we get Ck
}X24 for the large rescaled parameterX, in full agreement
with Fig. 9. The curvature correlation function, in view o
Eq. ~5.6!, may be used, together with the velocity correlati
function, for numerical tests of the accuracy of the curvat
evaluation ~which may be quite tricky using the finite

r

;

FIG. 8. Fourier transform of the velocity correlation function
displayed in Fig. 7 in the log-log scale. Lines represent slopes c
acteristic for the GUE (24), the GOE (23), and the Poisson en
semble (22). The data forb510 are not plotted to improve the
legibility of the figure.
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difference method since small and large curvatures may
quire different steps in the parameter!.

VI. HIGHER DERIVATIVES OF ENERGY
WITH RESPECT TO THE PARAMETER

Algebraic decay of the Fourier transform of the veloc
correlation function, on the one hand, provides informat
about the singularity of some higher derivative ofCv(l) at
l50 and, on the other hand, indicates the possibility o
divergence of a distribution variance of some higher deri
tives of the energy levels with respect to the parameter@17#.
In particular, for the orthogonal ensemble (b51), the vari-
ance of the curvature distribution̂K2& does not exist and in
order to characterize the mean curvature one uses the m
absolute valuêuKu& instead@37#. Moreover, the second mo
ment of the distribution of the third derivatives of ener
levels L:5d3E/dl3 was predicted@17# to diverge for
b51 andb52.

To test this prediction we have studied the distribution
these third derivatives. The most difficult part here is to d
termine what to call them, using the level motion pictu
where the curvature of the level is identified with the acc
eration of the fictitious particle, the third derivative of th
energy will correspond to the derivative of the accelerati
In the spirit of this mechanical analogy we refer to the th
derivative as a change in acceleration.

We have restricted the numerical study of the distribut
of the third derivatives to canonical orthogonal and unita
ensembles~the GOE and GUE!. The obtained numerical re
sults are displayed in Fig. 10. As expected, the distributi
of the third derivatives are characterized by the algeb
tails; the numerically obtained power-law decay yiel
P(L);L (b13/2), which confirms the divergence of the var
ances both for the GOE and the GUE.

It is interesting that the distribution of the third deriv
tives may be quite nicely approximated by a very sim
ansatz

P~L !5
N b8

~11BbL
A~b!!~b13!/2A~b! , ~6.1!

FIG. 9. Curvature-curvature correlation functionC̃k(X) ob-
tained forN550 (L), 60 ~s!, 70 ~h!, 80 ~n!, andN590 ~K/'!
for the GOE~open symbols! and the GUE~full symbols!. Universal
rescaled velocity correlations are represented for comparison
thick dashed~GOE! and solid~GUE! lines.
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whereN b8 is a normalization constant andBb andA(b) are
free parameters. In Eq.~6.1! the third derivatives are conve
niently rescaled taking the unfolded spectrum~i.e., with the
mean level spacing equal to unity! with derivatives calcu-
lated with respect to the rescaled parameterX5A^v2&l.

We have fitted the distribution of this form to the nume
cal data for both the GOE and the GUE. The results
represented in Fig. 10 as smooth curves and quite succ
fully represent the numerical data. The obtained values of
parameters are equal for the GOE toA151.67 and
B159.08, while for the GUE we obtainA252.50 and
B250.84. The obtained values ofAb are close to simple
fractionsA155/3 andA255/2, the corresponding curves a
indistinguishable from best fits within the accuracy of o
data.

VII. CONCLUDING REMARKS

We have analyzed various aspects of parametric dynam
in the space of Hermitian random matrices. Such a mo
may be applied to study transitions between Poissonian,
thogonal, and unitary universality classes. We have analy
numerically the situations when the parameter change d
not modify the global properties of the ensemble studied,
case labeled as a ‘‘perpendicular’’ transition to contras
with the ‘‘parallel’’ case when the parameter is responsi
for the breakup of the symmetry or other change of the pr
erties of the ensemble studied. We have, however, comp
our results with predictions of other works where often su
a parallel parameter action was considered.

We have paid particular attention to the study of the tra
sition between the Poissonian ensemble characterized
strongly localized wave functions and the delocalized Gau
ian ensembles~the GOE or GUE!. In particular, the numeri-
cal tests of the analytic predictions for the distribution
level velocities in the case of broken time-reversal invarian
@26# confirmed the predicted shape. We have observed a
agreement between the theory@26# and the numerical data
however, as far as the prediction for the velocity variance

by

FIG. 10. Distribution of third derivatives of the eigenenerg
with respect to the parameterP(L) in the double-logarithmic scale
Histograms correspond to numerically obtained data for the G
~thick line! and the GUE~thin line!, both obtained for random ma
trices of rankN571. Dotted and dashed lines represent the bes
of the proposed distribution, Eq.~6.1!, for the GOE and the GUE
respectively.
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considered. We have discussed the possible origin of
difference. We have shown that the distribution of the sa
functional form works for the delocalization transition al
for the real symmetric random matrices. This calls for t
extension of the theory to such a case.

We have studied in detail also the distribution of lev
curvatures. Here no analytic prediction is available. We h
found that the numerically obtained distribution of curv
tures is well approximated by the generalized Cauchy dis
bution ~4.2! shown earlier to be exact@11–13# for the ca-
nonical ensemble, the GOE, and the GUE. The only requ
modification is to take the fractional value of the level rep
sion parameterb in accordance with the spacing distributio
We have found also that the same rescaling~4.1! holds ev-
erywhere except for the localized, no-TRI-symmetry e
semble. Then the agreement with Eq.~4.2! requires addi-
tional multiplication of all curvatures~rescaling! by a factor
of the order of unity and dependent onb.

This form of the curvature distribution implies its alg
braic tails of the formP(K);K222b. Similarly, we have
found that the same level repulsion parameterb governs the
tails of the Fourier-transformed velocity correlation fun
tions. Explicitly, the corresponding Fourier coefficients s
isfy to a good precisioncn;n222b.

A comparison with other works, where mostly the paral
transition have been studied@23–25,35,37,39# in various
models, indicates strong differences with the parallel tran
tions. This difference has been observed for the velocity c
relation function in the case of a partially broken TRI sym
metry in a fully delocalized case@23#. Here we have shown
that the sensitivity of level dynamics to the way in which t
parameter acts extends also to other parametric statis
measures as well as to other ensembles interpolating betw
‘‘pure’’ cases of the Poisson ensemble, the GOE, and
GUE. This has an important consequence: it shows that
universality of parametric dynamics is more limited that a
ticipated before@14#.

Finally consider the consequence of the presented re
for studies of realistic systems. Consider the semiclass
limit when the system is ‘‘large,’’ with a high density o
states and many highly excited levels. In the generic sit
tion a small change of the parameter cannot induce sig
cant changes in system symmetries and global proper
small changes of a parameter may be thus considere
perpendicular cases. This indicates that the perpendic
e
-
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e
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transitions studied in this paper are typically generic.
important exception is the change of the magnetic fields
systems with no additional symmetries where the field
duces the breakup of the time-reversal symmetry act
therefore, in a parallel way.

Thus the fact that the curvature distribution for the tra
sition between the Poisson ensemble and the GOE, rea
via the banded matrix model studied here, is described by
generalized Cauchy law Eq.~4.2! has important conse
quences. It has been suggested~see@30# and references cited
therein! that banded matrices may be used to simulate sta
tical properties of partially chaotic systems interpolating b
tween the integrable case~with Poisson level spacing statis
tics! and the fully chaotic case~the GOE!. This has been
partially based on the similarity of the level spacing dist
bution observed in both cases, well approximated by
Izrailev ansatz@38# or for TRI symmetry systems by th
Brody distribution. However, even for chaotic systems,
shown before, small curvature behavior may be abund
due to isolated avoided crossings and scarring of wave fu
tions @11#. For the mixed-phase-space systems the avoi
crossings are typically quite narrow and isolated, betwe
them the levels can be adiabatically followed as a param
is varied. Generically, small changes of a parameter are
companied by small changes of eigenenergies that may
treated by a Taylor-series expansion with a leading lin
term. It shows that such systems will exhibit a great ab
dance of small curvatures, accompanied possibly by a sin
larity of the distribution atK50 ~see also@11# for an addi-
tional discussion and numerical examples!. Banded random
matrices show a curvature distribution different from what
expected for a quantum system with a mixed phase sp
Thus this ensemble is not adequate for simulating the sta
tical properties of partially integrable or weakly chaotic sy
tems at least in cases when parametric dynamics is c
cerned. On the other hand, the HBRM ensemble seems t
very useful for obtaining predictions for random systems t
exhibit a transition to localization, well into the localizatio
regime.
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