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Nonuniversality in level dynamics
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Statistical properties of parametric motion in ensembles of Hermitian banded random matrices are studied.
We analyze the distribution of level velocities and level curvatures as well as their correlation functions in the
crossover regime between three universality classes. It is shown that the statistical properties of level dynamics
are in generahonuniversaland strongly depend on the way in which the parametric dynamics is introduced.
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I. INTRODUCTION i.e., systems pertaining to a given, e.g., GOE universality
class. This is often not the case in a realistic situation. In

A link between random matrix theolRMT) [1] and the particular, in the presence of the magnetic field or the
statistical properties of spectra of quantum systems is welharonov-Bohm flux, the time-reversal invarian¢gRI)
established. Depending on the symmetry of a classically chsésymmetry becomes broken; such a situation corresponds to a
otic quantum system, its spectral fluctuations are describecrossover between the GOE and the GUE for a random sys-
by the Gaussian orthogon&GOE), the Gaussian unitary tem. In this context the velocity-velocity correlation function
(GUE), or the Gaussian symplectic ensem@B&SE) [2,3]. has been studied intensivelg1,22,17 as well as the veloc-

Quite often the physical systems depend on some externdy distribution[23] or the curvature distributiof24,25. The
parameter, say); therefore, it is interesting to study the authors considered mostly the situation when the increase of
level dynamics, i.e., the motion of eigenvaluég\) as a the external parameter (e.g., the magnetic fieJddestroys
function of \. Among the first parametric properties studiedthe time-reversal invariance, although, importantly, it has
were the investigations of the avoided crossings gdp$],  been noticed 23] that the parametric velocity distribution
the parametric number variang|, or the curvature of the may strongly depend on the nature of the perturbation. Rela-
levels (i.e., the second derivatives of their energies with re-tively less frequent were studies of the parametric dynamics
spect to the paramedef8—13. It has been claimed that the in the transition region between completely delocalized and
statistical properties of level dynamics are universal for disdocalized spectrasee, however, e.g., the treatment of the
ordered or strongly chaotic systeni8,14] provided the Velocity distribution for the broken-TRI-symmetry case in
change of\ does not modify global symmetries properties.[26,27).

To reveal the universality one has to both unfold the energy In order to model the spectra of quantum systems in a
levels [3] and appropriately rescale the parameter Ccrossover regimga weak localization or a partially broken
[8,11,14. Other statistical measures of parametric dynamic$ymmetry one may utilize random matrix ensembles that
such as the level slopévelocity) distribution (Gaussian interpolate between the canonical ensembles. For example,
shaped for random systerf8,11,14), the velocity-velocity ~real symmetric band random matrices are capable of model-
correlation functiorf14—17 in the bound spectrum, or para- ing the transition between the localized and the delocalized
metric conductance fluctuatiofigg] and fluctuations in the regime. Statistical properties of their eigenvalues and eigen-
Wigner time delay19] for scattering systems have also beenvectors depend on a single scaling parameteb?/N [28],
discussed. whereN denotes the matrix size ardthe bandwidth. Al-

A word of caution is, however, necessary at this point.lowing the matrices to be Hermitian and changing the rela-
Even for the nearest-neighbor spacing distribution, widelytive weight of the imaginary component, one can model
considered to be universal, exceptions from the RMT predicthe effect of the time-reversal symmetry breaking and the
tion may be quite significant for real physical systef@g].  transition from an orthogonal to a unitary universality class.
Much more pronounced and common are the deviations fronthe corresponding scaling parameteris proportional to
the RMT predictions for the parametric motion of levels. In Na [29] for small perturbations. An ensemble of Hermitian
particular, as shown by Takami and Hasegq®@, the cur-  band random matric$iBRMs) can therefore be completely
vature distribution shows nonuniversal behavior for smallcharacterized by two scaling parametessy) [30]. The
curvatures even for the mixing systef@ Bunimovich sta- Poissonian, strongly localized spectrum is obtained in the
dium). Similarly, non-Gaussian slope distributions as well adimit x<1, while in the opposite delocalized limie>1 the
strongly non-Cauchy-like curvature distributions were ob-model reduces to the GOE foy=0 and the GUE for
served for a magnetized hydrogen atptd]. The origin of  y>1.
these deviations has been linked to partial wave-function lo- This work is intended as a systematic study of the para-
calization on unstable periodic orbits. Thus the nongenerienetric dynamics and the corresponding statistical measures
features of parametric statistics may provide most interestingn the transition region and in the localized regime. Our work
information about the physics of a given physical system. differs from most of the analyses mentioned above in the

Most of these studies considered pure symmetry casesay the parametric dependence is introduced. We assume
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where ®() denotes the unit step function vanishing at the
_____ origin. Independent random variablé% and gi'j are distrib-
SRR uted according to Gaussian distributions with the zero-mean
< > root-mean-square values equalotﬁ and ai'j , respectively.
)/ ‘/K, The parametexr measures the relative size of the imaginary
N / part of the off-diagonal matrix elemenig=(oi;/o}})?, i
\ % #j (the notation has been simplified with respect to Ref.
[30]). A normalization condition T#d?)=N+1 keeps all
the eigenvalues in a constrained energy range. It also allows
us to express the variances of the real and imaginary parts of
matrix elements in terms of matrix sidg integer bandwidth

. _ b, and real parametez,
FIG. 1. Scheme of the space of random matrigesl dynamical

systemg Three circles represent universality clasg¢sissonian, Ruo (N+1)

orthogonal, and unitajyand dashed lines represent crossovers be- (oj)°= 1+, (2.2
. . " +(a+ - -

tween them. Solid arrows stand for perpendicular transitions, ana- 2N+ (at1)(2N=Db)(b—1)

lyzed in this paper. A broken arrow exemplifies a parallel transition,

not treated here.

. a(N+1)
(%)= 2N+ (a+ 1)(2N—b)(b—1)

(1-8y). (2.3

that the changes of leave the global properties of the sys-

tem unaffected. In the random matrix approach this is For a diagonal random matrixo& 1) the density of ei-
equivalent to the assumption that the statistical properties qjenvalues is Gaussian and the level spacings are distributed
the ensemble of matrices do not depend on the value of thgccording to the Poisson distribution, independently of the
parameter\ determining the parametric dynamics. FOr narameter. In the opposite limiting case of the full matrix

physical system applications this is equivalent to saying tha(b: N), variations of the parameter correspond to the pro-

the symmetry properties of the system considered, in addigegg of the time-reversal symmetry breaking in a dynamical

tion to the character of the underlying classical dynamiCgy 1o and control the transition between orthogonal
(say, the fraction of the phase-space volume that is chaotlc(azo) and unitary ¢=1) ensembles
are invariant with respect th or, from a practical point of Statistical properties of the spectrum and eigenvectors of

view, the the dynamics changes only weakly within the real symmetric band matrices depend only on a scaling pa-
interval of A values considered in each case. The level dy- y P y gp

= 2 i i i it -
namics is, in a sense, “perpendicular” to crossovers betweeﬁagiitzlmcor?] /méggrl]sos%ct(ﬂ:an?olc&gn'zgt?osr?r?:;dq&gav\yagyr;u
canonical ensembles, as schematically shown in Fig. 1. Such P '

a physical situation may correspond to a variation of theoortEd. to describe also the distribution of elgen\(al[[EH

disorder parameter in a mesoscopic system, for which aI‘FI"m.d eigenvectorg32] and was subsequently explained theo-

other parameters are kept constant. Special attention is dravxr/ﬁt'ca"y 33]. . - .
The same scaling law holds also for Hermitian matrices

to the localized case, characterized by small valuex of 33,34, Moreover, effects of the time-reversal symmetr
where some analytic predictions obtained using supersym:=_ """ > ! ; y Y
reaking are controlled by another scaling parameter

metric calculus exisf26,27). _ " ; i
The interest in such a study is twofold. First, it is inter- y=2Na/(1-e) [30], stemming from the universal proper-

; : . es of the orthogonal-unitary transition founded by Pandey
esting to see how the parametric properties of the syster% ; )
follow the transition between different pure universality and Mehta[29]. The structure of eigenfunctions of HBRMs

classes. Second. the results obtained in the HBRM mod nd the distribution of the inverse participation ratio have

may serve in the future as a reference for a comparison Witﬁlsﬁe?iinnsgv%dé%isri?jceerTE]%S].arametric random matrix
statistics obtained in real physical systems. It is then of ut- P

most importance to know. what one may expec@ from the H(\)=HCOS\ + H,Sin\. (2.4)
purely random model. This may enable one to isolate the

nongeneric, i.e., characteristic for a given system, propertie®oth matricesH; andH, are taken from the same ensemble
The paper is organized as follows. In the next section Wi HBRMs. Hence the spectral propertiestbfare stationary
describe the model and the parametric dynamics. The distrisnd do not depend an. Moreover, during the transition, the
bution of level velocitieP(v) is analyzed in Sec. Ill. Level motion of eigenvalues is restricted to a bounded energy in-
curvatures are discussed in Sec. IV. Section V is devoted tgyya| for arbitrary\. This model of parametric dynamics
the velocity-velocity correlation functio®,(\). Section VI \yas already used for the investigation of level curvatures
considers higher-order statistical measures. Finally, we disrf_Ll] and velocity correlation functiongl6,17. The dynam-
cuss the consequences of the results obtained for variojsg of eigenvalues as a function hfmay be treated as the
statistical measures in Sec. VII. dynamics of interacting particlégigenvalueswith \ play-
ing the role of fictitious timd?2]. This allows us to interpret
the slope of the levels as the velocity of the particles and
their curvature as the corresponding accelerations.
Hermitian band random matrices are defined by Parametric dynamics defined above can be studied nu-
merically in a straightforward way. For several values of
Hij=(&i+i&)O(b—li—j), i,j=1,...N, (21  ensemble parameterd\(b,«) we have generated random

IIl. PARAMETRIC DYNAMICS FOR HERMITIAN BAND
RANDOM MATRICES
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matrices according to Eq$2.1)—(2.4). Diagonalizations of 10°
resulting matrices for several values xfhave allowed us

then to find level velocities and curvatures by a finite-  P(lwl)
difference method. Special attention has been paid to obtain

reliable values of velocities and curvatures, especially for 107
very small and very large values, by varying the size of the
step in\ [36]. Before computing the derivatives of the ei-
genvalues with respect th, the standard unfolding tech-
niqgue was applied3] to set the mean level spaciny to
unity. We have considered matrices of sidevarying be-
tween 50 and 500, velocities and curvatures have been com-
puted at about 200 different values nf and the typical 107
number of independent realizations of the dynaniigs.

(2.4)] in each case studied has varied with matrix size to Iwl
ensure at least 200 000 data points in each statistics. In other

words, we have Slmultane_)ously performed the averaginghspn model interpolating between the Poisson ensemble and the
over the energydata from different energy levels of a given GUE (a=1, a fully broken TRI symmetiy The thick (thin) line

matrix H) and the averaging over the disorder parametefsiogram corresponds to numerical data obtained in the localized
(several realizations of the dynamics for the same values Qfasex=0.126 (the delocalized case=1.408) from diagonaliza-
N,b, and«). tions of 10 000 matrices of rank=71. A dashed thick line repre-

To check the reliability of the numerical procedure we sents the theoretical prediction, E@.1), while a thin line repre-
have setb=N and we have reproduced known results con-sents the Gaussian distribution.

cerning the distribution of velocities and curvatures as well
as the velocity correlation function for the GOR#0) and  Poisson ensemble and the Gl&hd for ensembles interpo-
the GUE (¥=1). Moreover, we have verified that both scal- lating between the Poisson ensemble and the GOE. The
ing parameters andy correctly describe the parametric dy- former allows us to test the analytical prediction of Fyodorov
namics. The statistical properties of all quantities studied26l. ) o
have been found to be independent of the matrix dimension The theoretical prediction, as presented[26], has no
N (for sufficiently largeN) provided the parametess and free parameters; both the shape of 'the dlstrlbutlon.and its
y have been kept constant. scale(determined by the velocity variancere determined

In the following sections we describe results obtained foRy the theory. Surprisingly, the direct comparison of that
different statistics, commencing with the distribution of first distribution with the numerical data obtained has been highly
derivatives, i.e., velocities. To avoid any misunderstandingUnsatisfactory. The agreement is recovelse Fig. 2when
let us repeat again that all the data presented are obtained f@pth the theoretical distribution and the numerically obtained
perpendicular transitiongooth H; andH, in Eq. (2.4) be- data are rescaled with respect to the velocity variance
long to thesamerandom matrix ensemblas exemplified by ~ ,= V(v®) (note that the mean velocity vanishes by the con-
double-sided arrows in Fig. 1. Thus, for all valueshothe  Struction of the ensembleThus the apparent disagreement
scaling parameters andy have the same values. We shall originally observed is due to the difference between the theo-
not consider here the case when the parameter change mo#gtical and numerically obtained values of the velocity vari-

fies the global symmetry properties, a situation exemplifiedtnce(the ratio of the numerical value to the theoretical pre-
by broken line arrow in Fig. 1. diction being about 13 We do not have a clear explanation

of this disagreement. It may be due to the fact that the band-
width in our HBRM ensemble is sharply defingcompare
lll. DISTRIBUTION OF LEVEL VELOCITIES Eq. (2.1)], while Fyodorov[26] assumed a smooth decrease

For level dynamics within the GOE or the GUE the dis- of the random matrix elements variance with increasing dis-

tribution of level velocitiesP(v) is Gaussiai8,11,14. This tance from the_ dlagondl_l _.J|'

fact is easy to explain using first-order perturbation theory.. The t_heoret|ca| predictiof26], represented by a smooth
For A\=0 the derivativedE; /d\ is equal to the diagonal line in Fig. 2, takes the form

element of matrixH, expanded in the eigenbasis bf;.

Since both matrices are drawn independently from the same P(w)= ™ mweoth( 7w/ V6)- 6
ensemble, the matrix elements are Gaussian random numbers 6 sink?(rw/ \/E)
leading to the Gaussian velocity distribution.

On the other hand, in the strongly localized limit an ana-where the rescaled velocitw=v/o,. Similar qualitative
lytical formula for P(v) given by Fyodoro\26] for systems agreement is obtained for different values of the scaling pa-
with a broken TRI symmetry strongly differs from a Gauss-rameter up tax of the order of unity, corresponding to the
ian. A non-Gaussian character of the velocity distribution fortransition to a delocalized case. Then the numerical data start
the GOE to GUE transition, corresponding to the TRI sym-to show a Gaussiaftypical for the GUR large velocity tail
metry breaking, has been discussed28-25. instead of the exponential tail corresponding to fully local-

We have analyzed the transition between localized anized situation, as exemplified by the lack of large velocities
delocalized spectra both for random systems with a brokein the numerical data presented in Fig. 2 as a thin line histo-
TRI symmetry(i.e., the ensembles interpolating between thegram.

FIG. 2. Velocity distribution in a semilogarithmic scale for the

: (3.9
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FIG. 4. Exemplary curvature distribution for the ensemble inter-
polating between the localized Poisson cage=Q) and the GOE
(B=1) obtained numerically for matrices of rahk=71 and band-
width b=5 corresponding tox=0.352 (histogram. The thick
dashed line represents the fitted distribution, E4.2), with
B=0.59. Thin solid and dotted lines represent the limiting distribu-
tions for the Poisson ensemble and the GOE, respectively.

FIG. 3. Same as Fig. 2, but for real symmetric matriaes0:
thick line histogram, a localized cage- 0.056; thin line histogram,
a delocalized casg=5.63.

Although the theoretical prediction is obtained for the
case of a fully broken TRI symmetry, our numerical data
indicate that it works extremely well also for preserved TRI
symmetry(real symmetric matricgegprovided that again the
velocity variance is 'app.ropriately adjusted. The exemplar)(/amesﬁe(o,z], the same distribution may be used in a
data are prgse_nted in Fig. 3 f_o_r two cases corrt_espondlng @eneral case of the intermediate ensemble interpolating be-
strong localization and a transition to the delocalized regimeyveen Poisson ensemble, GOE, and GUE pure chmes

Here the ngmerically obtained V?”ance Is twice as large 8%ided we consider the perpendicular transitiorhe normal-
the theoretical value calculated in the same way as for th?zation constant is then equal to

broken-TRI-symmetry ensemble. It seems, therefore, that the
same distribution, Eq(3.1) describes the velocity distribu-

onstrate that if one allows the paramefgrto acquire real

tion for both the TRI-symmetry case and the no-TRI- r B_+2

symmetry situation. The difference between the two en- N 1 2 3
sembles (the former interpolating between the Poisson B_\/; B+1 :
ensemble and the GOE, the latter between the Poisson en- r CH

semble and the GUEappears in the numerical value of the
velocity variance only. It is clear the variance is a unique

parameter that determines the appropriate velocity scaléa,nd the resc‘?‘"”g E_c(.4.1) holds almost everywhere.
similarly as for the pure GOE and GUE]. To test this conjecture we have generated several para-

metric dynamics perpendicular to crossovers between the
Poisson ensemble and the GUE, the Poisson and between the
IV. DISTRIBUTION OF LEVEL CURVATURES GOE, and the GOE and the GUE using, as before, the for-

Let us consider now the distribution of curvaturesmulation of Sec. Il, Egs(2.1) and (2.4. The numerically

K =d2E/d\2. As shown by Gaspard and co-worké8g, the obtained histograms of curvatures in the double-logarithmic

tail of the distribution decays algebraically KS 2~#. This scale have been used to fit the algebraic decay of the tail of

universality has been verified for different systefs-11].  the distribution by the formule?(K)~K~*. Then g has

At the same time, the small curvature behavior has beeR€en found ag=u—2 [compare Eq(4.2)]. The same value

found to be nongeneric even for strongly chaotic system®f 8 has been used together with the numerically obtained

[10,17 and reflecting the system-dependent wave-functioryelocity variance to rescale the curvatures according to Eg.

localization propertiegscarring by periodic orbiis (4.1). The exemplary results of such a procedure together
On the other hand, the scaled curvature with the conjecturg4.2) are presented in Figs. 4 and 5 in
double-linear and double-logarithmic scales, respectively.
A Observe the excellent agreement between the numerical re-
K:K,37TO'5 (4. sults and the proposed distribution.

While Eq. (4.2) seems to describe well, at least approxi-
for pure random ensembles obeys the generalized Cauctipately, the numerical data for curvatures everywhere in be-
distribution[11-13 tween pure cases of the GOE, the GUE, and the Poisson

limit, the scaling(4.1) works best for the delocalized or
weakly localized spectra. For the Poisson ensemble to GUE
P(K):NB(1+K2)(B+2>/2 (4.2) crossover, close to the Poisson limit, the scaling obtained
using Eq.(4.]) is incorrect. The agreement with the general-
(whereB=1,2,4 for the GOE, GUE, and GSE, respectively,ized Cauchy distributio4.2) is obtained only if the numeri-
andNg denotes the normalization constartiere we dem- cal data are rescaled additionally by a numerical factor of the
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for the perpendicular action of the parameteiOn the other
P(ix) hand, if A is responsible for the TRI symmetry breaking, it
K

has been shown that the tails of the curvature distribution are
exponential[24,25 and not algebraic, as observed in this
work. Parametric statistics are therefore sensitive to the way
the parameter acts. Another example of this sensitivity is
available from the earlier studies of periodic band random
matrices[37] and three-dimensional Anderson modiab],
where the curvature distribution close to a log-norm distri-
bution has been observed in the localized case, while yet
another distribution has been proposed in transition regime
[40].

10.0

0.0 0.1 1.0 100.0

Il V. VELOCITY-VELOCITY CORRELATION FUNCTION

FIG. 5. Same as Fig. 4, but in a double-logarithmic scale. In a series of papers, Simons and Altshul&é#] have
discussed the universality of parametric statistical properties

g v th i the d ; ‘ for disordered samples as well as for Gaussian ensembles. To
ifferently, the parameteg in the denominator of Eq4.1)  o\ea) the universality both the eigenvalugs unit mean

should be replaced by another function@®fthat goes tg3 spacing and the parametex (asX=o,\) have to be res-

when the transition to the delocalized TRI-symmetry-brokerba|ed[8 11,14. We have observed the power of such a res-
case(i.e., the GUR is fully accomplished. This indicates that caling a'Iref;ldy. in the previous sections.

the proposed distributiof.2) is most probably the approxi-  cqngjder next the velocity-velocity correlation function, a

mate one only. Still, we find it quite remarkable that thisfrequent subject of recent investigatidiisi—18,21,24
simple analytic expression, with the proper rescaling, works T

so well for the interpolating ensembles. 1 2m

Let us mention that the power of the algebraic tail behav- C,(\):= 277A2< f vi(N)vi(N +>\)d7\'>1 (5.9
ior may be analytically related to the level repulsion param- 0
eter 8 by a simple consideration of>22 random matrices
[8] yielding u=B+2. A comparison of3 values obtained
from the tail of the distribution witlB’ values obtained from
the independent fit of the Izrailev distributidty (s) [38] is
presented in Fig. 6 in the whole interval of the intermediate
B values. The agreement is quite gothd of a similar
guality to that obtained for the Fourier transform of the
velocity-velocity correlation functionconsidering that both fro
the spacing distributior® 5, (s) and the proposed curvature
distribution P(«) are most probably good approximations to
the true distributions only. 5.2

It is worth noting that the distributiot¥.2) works well for '

the ensemble interpolating between the GOE and the GURii the proportionality coefficient; dependent on the en-

order of unity(typically 1.5—-2, depending oB). Putting it

where() denotes ensemble averaging aldstands for the
mean level spacing. By definitioﬁu(0)=of, thus the ap-
propriately rescaled correlation functions take the form
_CU(X)=CU(X)/05. Moreover, several models of time-
reversal symmetry breaking due to the Aharonov-Bohm flux
lead to a correlation function practically indistinguishable
m the one characteristic for the GUE.

It was shown[14,21,19 that for all three universality
classes the rescaled correlation function

Co(X)~AgX™%,  X—o,

2.0
15 ¢
1.0 ¢

05 ¢

0.0

0.0

0.5

1.0

1.5

By

2.0

semble (we denote bygB the level repulsion parameter
B=1,2,4 for the GOE, the GUE, and the GSE, respectively

Explicit expressions have been obtairjdd] for closely
related[but distinct fromC,(\)] autocorrelation functions at
fixed energy. A global approximation fdZ,(X) has been
proposed 16]. For the case of a classically chaotic system
subject to an Aharonov-Bohm flux Berry and Keatif]
obtained a semiclassical approximation @y(\) having the
form of an everywhere analytic function aof. Yet it was
demonstrated17] that C,(\) is not analytic and suffers a
logarithmic singularity aih =0.

Analytic properties of correlation functions are conve-
niently studied using the periodicity . In the Fourier do-
main

FIG. 6. ParameteB obtained from the decay of the tail of the
curvature distribution against the level repulsion paramgteob-
tained from the independent fit of the Izrailev distributif38].
Each dot represents one ensemble interpolating between the PoissbR€ mean-squared velocity, determining the scale, is given
ensemble, the GOE, or the GUE. by the sum of all coeﬁicient&lf:C(O):E‘;,":Ocn. Expand-

CU(A)=n§O c,COSN\). (5.3
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_ FIG. 8. Fourier transform of the velocity correlation functions

FIG. 7. Rescaled velocity correlation functi@),(X) obtained  displayed in Fig. 7 in the log-log scale. Lines represent slopes char-
for five transitions perpendicular to the GUE-Poisson crossovegcteristic for the GUE € 4), the GOE ¢ 3), and the Poisson en-
N=71c=2.0:b=71(A) (GUB), b=10(+), b=7 (1), b=5(0),  semble ¢ 2). The data foro=10 are not plotted to improve the
andb=4 (). Ensemble averaging is performed over 100 matrices]egibility of the figure.
the lines are drawn to guide the eye.

that the validity of Eqs(5.2) and (5.4) extends to the inter-

ing the dependence of a given eigenvaluean the Fourier  mediate ensembles and fractional values of the repulsion pa-
seriesE; =3, ___a;e"™, wherea,=a*,, on account of Eq. rameterg.
(5.1) it is easy to see that,=n?(|a,|?)/A2. We stress again that this result is restricted to the perpen-

The asymptotic behavior of,(\)~—\ "2 corresponds dicular transitions only. If parametaris responsible for the
to a linear increase of Fourier coefficiemtsfor smalln. On  transition between the ensembi@sg., the magnetic flux in
the other hand, for largen it was shown[17] that the Aharonov-Bohm effetthe velocity-velocity correlation

{|lay|?)~n~*"# and, consequently, function obeys thec,~n~* algebraic decay, independently
of the degree of localizatiofil7]. Thus, similarly to the ve-
c,~n~2 A, (5.4) locity distribution itself[23], also the velocity-velocity cor-

relation functionC,(X) is sensitive to the nature of pertur-
bation generating the parametric dynamics.

In a full analogy with the velocity-velocity correlation
hfunction (5.1) we define the curvature correlation function

This result was obtained by extending the paramgténto
the complex plane and analyzing the distribution of branc
points and anticrossindd,6].

Thus, despite the nonanalytic character of the correlation 1 o
function, bothC,(A) and its Fourier transform have simple C(\):= _2<f KiN)Ki(N +N)dN ). (5.5
asymptotics given by Eq$5.2) and(5.4), respectively. It is 2mA
interesting to see whether a similar behavior may be found
for the interpolating ensembles. To this end we have studied However, this function does not provide us with any new
the asymptotics o€, for all three possible transitions, i.e., information. This fact is easy to understand studying the
ensembles interpolating between the Poisson ensemble afdurier expansiol€, (\)==_.k,e". As for velocity cor-
the GOE, the Poisson ensemble and the GUE, as well as thielation function one uses mean Fourier coefficients of indi-
GOE and the GUE. In all cases the paramateacted per- vidual energy levels and obtains relatikp=n*{|a,|2)/A2.
pendicular to a given transitioftompare Fig. L A comparison with the velocity correlation function Fourier

We have observed the same 2 largeX behavior Eq.  coefficients yields immediately
(5.2) independently of the ensemble studied. As an example
Fig. 7 shows the rescaled velocity-velocity correlation func-
tions C,(X) corresponding to five different cases along the Celh) = ch()\)'
Poisson-GUE crossover.

Algebraic decay of the corresponding Fourier transformsyhich easily yields the properties @, (\) from known
is visualized in Flg 8. Observe the continuous Change of th@ropertiede_g_, the asymptotic behavjarf CU()\) Equation
slope, growing from-4 for the GUE until—2 for the Pois-  (5.6) holds for an arbitrary matrix ensemble. For complete-
son limit. This corresponds to the continuous change of th@ess we present the numerically obtain@g(\), rescaled
repulsion parametg8 between 2 and O in the level spacing with respect toC,(0), for the GOE and the GUE iRig. 9.
distribution. Independently one may fit the nearest-neighboNotice a much faster decay of the correlation between cur-
spacing distribution obtained numerically to the Izrailev dis-yatures as compared to the velocity correlation function. As-
tribution [38] Plgr(S), which pI’OVideS an excellent approxi- ympto“ca”y, using CU~X72 and Eq. (56) we get Ck
mation for the nearest-neighbor spacing distribution for thex x4 for the large rescaled parametér in full agreement
interpolating ensembIeQB,(s)~sﬁ' for smalls. We have with Fig. 9. The curvature correlation function, in view of
verified thatB values obtained by fitting the straight line to Eq. (5.6), may be used, together with the velocity correlation
the tail of logg,) equal B’ values obtained from the fits of function, for numerical tests of the accuracy of the curvature
the spacing distribution within 5%. Therefore, we concludeevaluation (which may be quite tricky using the finite-

2
(5.6
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FIG. 9. Curvature-curvature correlation functi(ﬁk(X) ob-
tained forN=50 (¢ ), 60(O), 70 (1), 80 (A), andN=90 (/)
for the GOE(open symbolsand the GUEfull symbolg. Universal
rescaled velocity correlations are represented for comparison bg
thick dashed GOE) and solid(GUE) lines.

FIG. 10. Distribution of third derivatives of the eigenenergy
ith respect to the parametB(L) in the double-logarithmic scale.
istograms correspond to numerically obtained data for the GOE
(thick line) and the GUE(thin line), both obtained for random ma-

trices of rankN="71. Dotted and dashed lines represent the best fit

difference method since small and large curvatures may resf the proposed distribution, E¢6.1), for the GOE and the GUE,
quire different steps in the parameter respectively.

where\ ; is a normalization constant ag}; andA(B) are
free parameters. In E@6.1) the third derivatives are conve-
niently rescaled taking the unfolded spectrirs., with the
Algebraic decay of the Fourier transform of the velocity mean level spacing equal to unityith derivatives calcu-
correlation function, on the one hand, provides informationlated with respect to the rescaled parameter\/(vz)h.
about the singularity of some higher derivative@f(\) at We have fitted the distribution of this form to the numeri-
A=0 and, on the other hand, indicates the possibility of acal data for both the GOE and the GUE. The results are
divergence of a distribution variance of some higher derivarepresented in Fig. 10 as smooth curves and quite success-
tives of the energy levels with respect to the paramieltél.  fully represent the numerical data. The obtained values of the
In particular, for the orthogonal ensemblg<£1), the vari- parameters are equal for the GOE #,=1.67 and
ance of the curvature distributigii?) does not exist and in B;=9.08, while for the GUE we obtaimrA,=2.50 and
order to characterize the mean curvature one uses the meBg=0.84. The obtained values &, are close to simple
absolute valué|K|) instead[37]. Moreover, the second mo- fractionsA;=5/3 andA,=5/2, the corresponding curves are
ment of the distribution of the third derivatives of energy indistinguishable from best fits within the accuracy of our
levels L:=d3E/d\® was predicted[17] to diverge for data.
B=1 andB=2.
To test this prec_iiction we have s_tqdied the distripution of VII. CONCLUDING REMARKS
these third derivatives. The most difficult part here is to de-
termine what to call them, using the level motion picture ~We have analyzed various aspects of parametric dynamics
where the curvature of the level is identified with the accel-n the space of Hermitian random matrices. Such a model
eration of the fictitious particle, the third derivative of the may be applied to study transitions between Poissonian, or-
energy will correspond to the derivative of the accelerationthogonal, and unitary universality classes. We have analyzed
In the spirit of this mechanical analogy we refer to the thirdnumerically the situations when the parameter change does
derivative as a change in acceleration. not modify the global properties of the ensemble studied, the
We have restricted the numerical study of the distributioncase labeled as a “perpendicular” transition to contrast it
of the third derivatives to canonical orthogonal and unitarywith the “parallel” case when the parameter is responsible
ensemblegthe GOE and GUE The obtained numerical re- for the breakup of the symmetry or other change of the prop-
sults are displayed in Fig. 10. As expected, the distributiongrties of the ensemble studied. We have, however, compared
of the third derivatives are characterized by the algebrai®ur results with predictions of other works where often such
tails; the numerically obtained power-law decay yieldsa parallel parameter action was considered.
P(L)~L(#*32) which confirms the divergence of the vari- We have paid particular attention to the study of the tran-
ances both for the GOE and the GUE. sition between the Poissonian ensemble characterized by
It is interesting that the distribution of the third deriva- strongly localized wave functions and the delocalized Gauss-
tives may be quite nicely approximated by a very simpleian ensemblegthe GOE or GUE In particular, the numeri-
ansatz cal tests of the analytic predictions for the distribution of
level velocities in the case of broken time-reversal invariance
, [26] confirmed the predicted shape. We have observed a dis-
P(L)= Nﬁ 6.1) agreement between the the_({@ﬁ] and the num_erical _data, _
(14 BgLAR) (BF3RAGE) however, as far as the prediction for the velocity variance is

VI. HIGHER DERIVATIVES OF ENERGY
WITH RESPECT TO THE PARAMETER
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considered. We have discussed the possible origin of thigansitions studied in this paper are typically generic. An
difference. We have shown that the distribution of the samé@mportant exception is the change of the magnetic fields in
functional form works for the delocalization transition also systems with no additional symmetries where the field in-
for the real symmetric random matrices. This calls for theduces the breakup of the time-reversal symmetry acting,
extension of the theory to such a case. therefore, in a parallel way.

We have studied in detail also the distribution of level Thus the fact that the curvature distribution for the tran-

curvatures. Here no analytic prediction is available. We havéition between the Poisson ensemble and the GOE, realized
found that the numerically obtained distribution of curva- V12 the banded matrix model studied here, is described by the

tures is well approximated by the generalized Cauchy distrigéneralized Cauchy law Eq4.2) has important conse-
bution (4.2) shown earlier to be exa¢l1-13 for the ca- duences. It has been suggesteeke[30] and references cited

nonical ensemble, the GOE, and the GUE. The only required€"€in that banded matrices may be used to simulate statis-
modification is to take the fractional value of the level repul-/C8l properties of partially chaotic systems interpolating be-
sion parameteg in accordance with the spacing distribution. Ween the integrable caswith Poisson level spacing statis-

We have found also that the same rescalifig) holds ev- ¢S and the fully chaotic casethe GOB. This has been
erywhere except for the localized, no-TRI-symmetry en-partially based on the similarity of the level spacing distri-

semble. Then the agreement with Hd.2) requires addi- bution observed in both cases, well approximated by the

tional multiplication of all curvaturegrescaling by a factor ~ 2railev ansatz[38] or for TRI symmetry systems by the
of the order of unity and dependent @ Brody distribution. However, even for chaotic systems, as

This form of the curvature distribution implies its alge- shown .before, Sm?" curvature behavior may be abundant
braic tails of the formP(K)~K ~2~£. Similarly, we have due to isolated avoided crossings and scarring of wave func-

found that the same level repulsion paramgtegoverns the tions .[11]' For the_ mixed-phase-space systems the avoided
tails of the Fourier-transformed velocity correlation func- tchOSSItr;]gsl arel typlcailaly qé‘.'ti rt1_arr|c|JWf a:lnd |S(;)Iated, betwe(;:n
tions. Explicitly, the corresponding Fourier coefficients sat-. em Ihe levels can be adiabatically Tollowed as a parameter
isfy to a good precisior,~n~2"4. is varleo!. Generically, small chang_es of a parameter are ac-
A comparison with other works, where mostly the parallelConm"’m'ed by small chgnges of eigenenergies th_at may be
transition have been studig®3-25,35,37,3pPin various treated by a Taylor-series éxpansion W'th a leading linear
models, indicates strong differences with the parallel transigderm' It fShOWi that StUCh systems W'I! %Xh'b't %Igrbeat abun—
tions. This difference has been observed for the velocity cor; a_r:ce ?tr?mg' tc_ubrv? ure?kficgompanlle ffsfs' y ydad_smgu-
relation function in the case of a partially broken TRI sym- anty of the distrioution ai = (see alsq11] for an addi-
metry in a fully delocalized cage3]. Here we have shown t|ona_l discussion and numer'lca_l ex.ampl'eBanded random .
that the sensitivity of level dynamics to the way in which the Matrices show a curvature distribution different from what is
parameter acts extends also to other parametric statistic pected for a quantum system with a mixed phase space.

measures as well as to other ensembles interpolating betwe us this ef?semb'e IS not _adequate for simulating th? statis-
“pure” cases of the Poisson ensemble, the GOE, and thgcal properties of partially integrable or weakly chaotic sys-

GUE. This has an important consequence: it shows that thigMS :tolea;[ mtk(‘:asEs v&/htehn ﬂaégr'cletrlc dyglamlcs IS tcog—
universality of parametric dynamics is more limited that an-C€7N€d. ©n the other hand, the | ensemple seems 10 be
ticipated beford14]. very useful for obtaining predictions for random systems that

Finally consider the consequence of the presented resul@(h_'b't a transition to localization, well into the localization

for studies of realistic systems. Consider the semiclassicaF9'™Me:

limit when the system is “Iz_irge,” with a high dens_lty pf ACKNOWLEDGMENTS

states and many highly excited levels. In the generic situa-
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